Wednesday, February 4, 2026

Amazon S3 Vectors now usually obtainable with elevated scale and efficiency


Right now, I’m excited to announce that Amazon S3 Vectors is now usually obtainable with considerably elevated scale and production-grade efficiency capabilities. S3 Vectors is the primary cloud object storage with native help to retailer and question vector knowledge. You should utilize it that will help you cut back the overall price of storing and querying vectors by as much as 90% when in comparison with specialised vector database options.

Since we introduced the preview of S3 Vectors in July, I’ve been impressed by how shortly you adopted this new functionality to retailer and question vector knowledge. In simply over 4 months, you created over 250,000 vector indexes and ingested greater than 40 billion vectors, performing over 1 billion queries (as of November twenty eighth).

Now you can retailer and search throughout as much as 2 billion vectors in a single index, that’s as much as 20 trillion vectors in a vector bucket and a 40x enhance from 50 million per index throughout preview. This implies that you could consolidate your total vector dataset into one index, eradicating the necessity to shard throughout a number of smaller indexes or implement advanced question federation logic.

Question efficiency has been optimized. Rare queries proceed to return ends in beneath one second, with extra frequent queries now leading to latencies round 100ms or much less, making it well-suited for interactive functions reminiscent of conversational AI and multi-agent workflows. You can even retrieve as much as 100 search outcomes per question, up from 30 beforehand, offering extra complete context for retrieval augmented era (RAG) functions.

The write efficiency has additionally improved considerably, with help for as much as 1,000 PUT transactions per second when streaming single-vector updates into your indexes, delivering considerably greater write throughput for small batch sizes. This greater throughput helps workloads the place new knowledge should be instantly searchable, serving to you ingest small knowledge corpora shortly or deal with many concurrent sources writing concurrently to the identical index.

The totally serverless structure removes infrastructure overhead—there’s no infrastructure to arrange or sources to provision. You pay for what you employ as you retailer and question vectors. This AI-ready storage offers you with fast entry to any quantity of vector knowledge to help your full AI growth lifecycle, from preliminary experimentation and prototyping by means of to large-scale manufacturing deployments. S3 Vectors now offers the dimensions and efficiency wanted for manufacturing workloads throughout AI brokers, inference, semantic search, and RAG functions.

Two key integrations that have been launched in preview at the moment are usually obtainable. You should utilize S3 Vectors as a vector storage engine for Amazon Bedrock Data Base. Particularly, you need to use it to construct RAG functions with production-grade scale and efficiency. Furthermore, S3 Vectors integration with Amazon OpenSearch is now usually obtainable, as a way to use S3 Vectors as your vector storage layer whereas utilizing OpenSearch for search and analytics capabilities.

Now you can use S3 Vectors in 14 AWS Areas, increasing from 5 AWS Areas in the course of the preview.

Let’s see the way it works

On this put up, I exhibit how one can use S3 Vectors by means of the AWS Console and CLI.

First, I create an S3 Vector bucket and an index.

echo "Creating S3 Vector bucket..."
aws s3vectors create-vector-bucket 
    --vector-bucket-name "$BUCKET_NAME"

echo "Creating vector index..."
aws s3vectors create-index 
    --vector-bucket-name "$BUCKET_NAME" 
    --index-name "$INDEX_NAME" 
    --data-type "float32" 
    --dimension "$DIMENSIONS" 
    --distance-metric "$DISTANCE_METRIC" 
    --metadata-configuration "nonFilterableMetadataKeys=AMAZON_BEDROCK_TEXT,AMAZON_BEDROCK_METADATA"

The dimension metric should match the dimension of the mannequin used to compute the vectors. The space metric signifies to the algorithm to compute the gap between vectors. S3 Vectors helps cosine and euclidian distances.

I may also use the console to create the bucket. We’ve added the aptitude to configure encryption parameters at creation time. By default, indexes use the bucket-level encryption, however I can override bucket-level encryption on the index stage with a customized AWS Key Administration Service (AWS KMS) key.

I can also add tags for the vector bucket and vector index. Tags on the vector index assist with entry management and price allocation.

S3 Vector console - create

And I can now handle Properties and Permissions immediately within the console.

S3 Vector console - properties

S3 Vector console - create

Equally, I outline Non-filterable metadata and I configure Encryption parameters for the vector index.

S3 Vector console - create index

Subsequent, I create and retailer the embeddings (vectors). For this demo, I ingest my fixed companion: the AWS Model Information. That is an 800-page doc that describes how one can write posts, technical documentation, and articles at AWS.

I take advantage of Amazon Bedrock Data Bases to ingest the PDF doc saved on a normal function S3 bucket. Amazon Bedrock Data Bases reads the doc and splits it in items referred to as chunks. Then, it computes the embeddings for every chunk with the Amazon Titan Textual content Embeddings mannequin and it shops the vectors and their metadata on my newly created vector bucket. The detailed steps for that course of are out of the scope of this put up, however you’ll be able to learn the directions within the documentation.

When querying vectors, you’ll be able to retailer as much as 50 metadata keys per vector, with as much as 10 marked as non-filterable. You should utilize the filterable metadata keys to filter question outcomes primarily based on particular attributes. Due to this fact, you’ll be able to mix vector similarity search with metadata situations to slender down outcomes. You can even retailer extra non-filterable metadata for bigger contextual info. Amazon Bedrock Data Bases computes and shops the vectors. It additionally provides giant metadata (the chunk of the unique textual content). I exclude this metadata from the searchable index.

There are different strategies to ingest your vectors. You’ll be able to attempt the S3 Vectors Embed CLI, a command line instrument that helps you generate embeddings utilizing Amazon Bedrock and retailer them in S3 Vectors by means of direct instructions. You can even use S3 Vectors as a vector storage engine for OpenSearch.

Now I’m prepared to question my vector index. Let’s think about I’m wondering how one can write “open supply”. Is it “open-source”, with a hyphen, or “open supply” with no hyphen? Ought to I take advantage of uppercase or not? I need to search the related sections of the AWS Model Information relative to “open supply.”

# 1. Create embedding request
echo '{"inputText":"Ought to I write open supply or open-source"}' | base64 | tr -d 'n' > body_encoded.txt

# 2. Compute the embeddings with Amazon Titan Embed mannequin
aws bedrock-runtime invoke-model 
  --model-id amazon.titan-embed-text-v2:0 
  --body "$(cat body_encoded.txt)" 
  embedding.json

# Search the S3 Vectors index for comparable chunks
vector_array=$(cat embedding.json | jq '.embedding') && 
aws s3vectors query-vectors 
  --index-arn "$S3_VECTOR_INDEX_ARN" 
  --query-vector "{"float32": $vector_array}" 
  --top-k 3 
  --return-metadata 
  --return-distance | jq -r '.vectors[] | "Distance: (.distance) | Supply: (.metadata."x-amz-bedrock-kb-source-uri" | break up("/")[-1]) | Textual content: (.metadata.AMAZON_BEDROCK_TEXT[0:100])..."'

The primary consequence exhibits this JSON:

        {
            "key": "348e0113-4521-4982-aecd-0ee786fa4d1d",
            "metadata": {
                "x-amz-bedrock-kb-data-source-id": "0SZY6GYPVS",
                "x-amz-bedrock-kb-source-uri": "s3://sst-aws-docs/awsstyleguide.pdf",
                "AMAZON_BEDROCK_METADATA": "{"createDate":"2025-10-21T07:49:38Z","modifiedDate":"2025-10-23T17:41:58Z","supply":{"sourceLocation":"s3://sst-aws-docs/awsstyleguide.pdf"",
                "AMAZON_BEDROCK_TEXT": "[redacted] open supply (adj., n.) Two phrases. Use open supply as an adjective (for instance, open supply software program), or as a noun (for instance, the code all through this tutorial is open supply). Do not use open-source, opensource, or OpenSource. [redacted]",
                "x-amz-bedrock-kb-document-page-number": 98.0
            },
            "distance": 0.63120436668396
        }

It finds the related part within the AWS Model Information. I have to write “open supply” with no hyphen. It even retrieved the web page quantity within the authentic doc to assist me cross-check the suggestion with the related paragraph within the supply doc.

Yet another factor

S3 Vectors has additionally expanded its integration capabilities. Now you can use AWS CloudFormation to deploy and handle your vector sources, AWS PrivateLink for personal community connectivity, and useful resource tagging for price allocation and entry management.

Pricing and availability

S3 Vectors is now obtainable in 14 AWS Areas, including Asia Pacific (Mumbai, Seoul, Singapore, Tokyo), Canada (Central), and Europe (Eire, London, Paris, Stockholm) to the present 5 Areas from preview (US East (Ohio, N. Virginia), US West (Oregon), Asia Pacific (Sydney), and Europe (Frankfurt))

Amazon S3 Vectors pricing relies on three dimensions. PUT pricing is calculated primarily based on the logical GB of vectors you add, the place every vector contains its logical vector knowledge, metadata, and key. Storage prices are decided by the overall logical storage throughout your indexes. Question prices embrace a per-API cost plus a $/TB cost primarily based in your index measurement (excluding non-filterable metadata). As your index scales past 100,000 vectors, you profit from decrease $/TB pricing. As regular, the Amazon S3 pricing web page has the small print.

To get began with S3 Vectors, go to the Amazon S3 console. You’ll be able to create vector indexes, begin storing your embeddings, and start constructing scalable AI functions. For extra info, try the Amazon S3 Person Information or the AWS CLI Command Reference.

I look ahead to seeing what you construct with these new capabilities. Please share your suggestions by means of AWS re:Publish or your regular AWS Help contacts.

— seb

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Latest Articles